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Abstract

Correctness  istllell]ost ililIJortallt  isslleill  safety-criticals oftwarcc o1ltrolsystcllls.  Unfortunately,
failures in critical segments of software for mcxtical radiation treatment, conlnmnicatio]ls,  and defense
are familiar to the pub]ic. Such inc.idcmts  motivate the use of software development techniques
that reclucc errors and detect defects. ‘1’hc  benefits of applying forma] methods in requirenlents-
driven software development (forward engineering) are well-documcmted; formal not ations are precise,
vcriflab]c, ancl facilitate automated processing. ‘1’his paper dcscrit)es the application of formal
methods and object-oricntccl  modeling to rcvcrsc engineering, in wllicll formal specifications are
dcvclopcd for existing, or legacy, code. in this project, several layers of formal specifications were
constructed for a portion of the NASA Space Shuttle l)igital Auto l’ilot  (I) AI’), a software module
that, is used to control tile position of the sl)ac.ecraft  through appropriate jet firings. ‘l’he reverse
cnginccring  process was facilitated hy tl]e Objcci  Modeling lkchnigue (OMT),  an infcmna] software
devcloplnent, approach that uses gral)llic.al notat,ionsto clcscribc software rccluiremcmts.

1 Introduction

Correctness  is most important ancl ncx.cssary in safety-critical software contro] syatms [1], Critical

softwa,rcfa,ilures  in medical radia,tioll cxluipment  [2], collll)lllllica.tiol~  networks, and dofcnsc  systems arc

familiar tothepuldic, ‘1’110 large numlm of softwalcIllalfll]lctiolls  regularly reported to the software

cmginccring  community [3], ncw statutm concerning liability for such failures, and a roc,cnt National

Research Council Acrona.utic,s and Space Enginmring  }Ioard Report [4], additionally motivatcthc  use

of software dmdopmcmt  tcxhniqum  that reduce errors  and detect  defects,
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The  benefits of using formal methods in requiremcmts-d riven software development (forward engineer-

ing) arc well-documcmted [5, 6], A formal mdhod is daractcrizcd  by a formal specification language

and a set of rules governing the manipulation of expressions in that language. ‘1’raditionally, formal

methods have been used in the early phases of development, in order  to clcscribc the requirements of a

soft ware systcm  or component. Using formal specification languages facilitates the car] y evaluation of

a software design and verification of its implemcmtation  through the use of formal reasoning tcc.hniques

[7, 8]. A formal specification can be manipulated, using automated techniques, to enable  the designer to

assess ihc consistency, comp]ctcncss,  and robustness of a design before it is implcmcntd.  FJac.h step in

the dcvclopmcnt  process can bc justified by matllematica]  proof, thus minimizing the number  of errors

duc to IIlisilltcrl}retatioll and ambiguity.

ltc:-e?~gi?lc:er’i?lg is the process of examining, understanding, and modifying a system with the intent

of inlplmnm~ting  the systcm in a ncnv form [9]. Re-engiliccring  of existing, or Jegaeg,  code is prefcrrd

to redeveloping the software from the original rcquircmcnts  in order to preserve functionalist y that has

been acllicvcd  over a period of time and to provide continuity to currc.nt  users of the software [1 O].

Onc of the most diflicu]t  aspcds of rc-cngincc:ring  is the recognition of the fuliction  of the existing

IJrograms. lieverse  I;ngineering  is the process of constructing high lCVC1 rcprcscntations from lower

lCVCI instantiation of an existing systcm. Common reverse engineering methods used by software

m aintcnan  c.e engineers arc+ observation (for example, test case analysis) and examination of source CO(1C.

‘J’llesc txxhniqucs arc often tedious and error-prone.

Onc way to take advantage of the benefits of formal methods in legacy systems, is to reverse engineer

tlic existing program code into formal specifications [11, 12, 1 3]. ‘1’hc resulting formal spcc.ific.at  ions

can tllcn be used as the basis for change requests and the foundat ion for  subsequent  verif icat ion

and validation [1-4]. Considcwing  the high cost of rc-illll)lclncl~tatiol~  and the ncwd to prcscrvc critical

functionality, rcvcrsc cnginccring  of code into formal specific.ations ofl’crs an alternative to traditional

ad hoc approacl~es  to maintaining safdy-critic.al  systems.

A highly visible example of a legacy system is the software for the NASA Space Shuttle, which was

conccivcd  in the early 1970s and has been opcrationa]  for over ten years [4]. Onc component of tllc

Shuttle software is the flight software, which provides guidance, navigation, slid control for the Space

Shuttle while it is in orbit. q’hc navigation function dctcrmincs  where. the shuttle is, the guidance



function ddcrmincs  where it should go next, and the control function determines lIOW to effect the next

move. While the vehicle is in orbit, the Digital Auto l’ilot (11A]’) software dctcrmincs  attitude and

translation] adjustments, based on astronaut selections. A Uzludc refers to the rotational position of

the vehidc  in terms of roll, pitch, and yaw, and translation  refers to the x, g, and z coordinates of

the vchiclc.  Figure 1 gives a pictorial rcprcscntation  of translation and attitude as they relate to the

position of the shuttle.
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Figure 1: Shutt]c  ‘.l’ranslational  and l{otationa]  Axes

l’rcscnt]y,  the Space Shutt]c  flight software project has a well-ddincd process for managing require-

ments  evaluation, This process is rcsponsib]e for ensuring that requirements gencratd  hy an engineer are

consistent, implcmcntdde,  and will SOIVC the proMen~ at hand. IIowever,  this process does not  in CIU dc

a well-dcfind set of analytical methods and techniques [1 5, 14]. When a cha.ngc. is nccdcd,  a dclailcd

description of the reasons for the change, known as a change request (Cl{.),  must be constructed before

the system can be rc-cnginccrd  to include the changes. Next,  the rcquircmcnts  analyst performs an in-

dcpth  analysis of the Cl{, guided by a list of generic error catcgorics,  followed by a formal inspection of

the Cl{ by several representatives of tlIc software project, including the author of the CR, requirements

analyst, dcvc]opcr,  verifier, and so on. Each potential error, termed an issue, that is identified by

the requirements analyst or the inspection process remains ‘(open” until a clearly-described solution

has been developed, at which point the issue is c.onsidercd “closed .“ When all inspect ions have been

conducted for a CR and all issues have been closd,  a CR is rca.dy for ill~l)lclnel~tatio]~.  At this point,

a baseline for the project, a milestone that describes the current system with the acccptcd  changes, is

meat  ed and schcdu]cd  for implement at ion.



~’he analysis step  of the CR process involves studying, understanding, and analyzing the contents of

a CR. Three  major deficiencies in this proc.css  ha.vc been identified Ly rccjuirwncmts  analysts [1 5]. I’imt,

there is no specific mdhodology  for conducting tile analysis of tile Cl{. Scc.end, there are no specific

compldion  criteria to indicate wlIcw sufllcicwt  information has been obtained for the Cl{. ‘1’bird, there

is no specific structured mechanism for documenti]lg  the results of the analysis process. Moreover, since

there is no structural approach for documenting the analysis, the understanding of the CR developed

l}y }hc requirements analyst is not formaJly rccordd for future use [1 5].

This paper dcscribcs  a projcwt  that applies formal methods  and ob jcc.t-oriented analysis to a suhsys-

tmn of the 11A]’ of the Shuttle, known as the l’base l’knq  which ddcrmincs  whdhm jet firings arc

ncdd to achieve tran slationa]  or rot ationa]  acceleration in a direction spccificd  by the crew. More

spccificall y, the Phas eyl ane module was  reverse cngillecred through the development of formal speci-

fications that capture the details of Phasellane requirmnents,  ]n order to facilitate the specification

process, a pictorial description of the subsystem was constructed using the Object Modeling Technique

(OM~’) [16], an informal software dcvdopment  approach that uses graphical notations to describe

software requirements,

2’110 remainder of the paper is organizd  as follows. Scc.tion 2 gives a brief introduction to formal

methods and object-oriental analysis tecl~niqucs.  Section 3 describes the l’hasc  Plane  project, including

sample specifications and a discussion of tlIc object-oriented ,ana]ysis. IJcssons learned from this project

are described in Section 4, with a summary of the benefits of constructing formal  specifications and

t IIe use of oh ject-oriented analysis tcdniqucx  in a revcwse  engineering project, Finally, conclusions and

future investigations are described in Se.c.tion  5,

2 Background Material

‘J’llis section briefly ddincs  and motivates the usc of forlnal methods. Also, the bcmdits  of object-oriented

analysis is clisc.ussecl.

2 . 1  l?orn~al  Metl~ods

A  jmvnal  rltetltod  consists of a jolw~{il spccijim  lion la ngtitigc and a set of jorm(illy  defined injerence

rdcs [7]. ‘I’l Ie specification language is uscxl  to describe the intended system  bd[avior , and the inference



rules provide a sound method  for reasoning about the specifications. In general, formal methods in

soft ware development provide man y benefits for forward engineering [5, 7]. First, it forces the designer

to be thorough in the (lcwclopmcnt  and the documentation of a systcm design. SCconcl,  the dcvclopcr

is a,blc to obtain precise answers to questions posed about the properties of tile systcm.  ‘1’bird, the

dcve]opcr is aldc to usc automated reasoning to clcterminc the correctness of the system (or a safety-

critica] component of the systcm)  with rcspcc.t to its specification.

Formal reasoning can be divided into two approaches: program  verification  and progrurn  synthesis.

Program verification is the process of checking the semantics of program text against its specification.

A program whose semantics satisfy its specification is said to be correct with respect  to the slmcifi-

c.ation, l’rogram  synthesis refers to formal techniques for systematically devdoping  a program from a

specif icat ion,  such that  the c.orrectncss of the resultilig program (witli respect to its spcc,ific.atio]l)  is

inherent in the dcvclopmcnt process itself [1 7].

2 . 2  O b j e c t - O r i e n t e d  A n a l y s i s

Software requirements dcfme the objectives of a software development effort. They provide the basis

by which the quality of the end-product is mcasurerl and guide the design of the soflware  architecture.

~’here arc a variety of approachm  to rcquircmcmts analysis, many of them in the broad  category known

as object-oriented requirements awlysis  (OOA)  [1 6], An objxt  is a sdf-c.ontaincd  module  that includes

both the data and proccxlurcs  that act on that data. ‘J’he emphasis on objects and their interactions

in 00A is in contrast to the more traditional approach to software dcwelopmcnt, which focuses on

proced u rcs,

Most 00A techniques begin by a careful assessment of the natural language description of the

prohlcm.  A silnp]c  first step in developing an 00A moclcl is to extract tile nouns  from the prolhn

description. Many of these nouns will share common properties and may bc described  as instances

of types, or classes. A class is a collection of objects that have common use. For example, G’alilco,

Voyager, and Magelkm  are all of the class spacecraft, and Vcnw, Mars, and Mercury are all of the

class planet. Some classes, referred to as subclasses are specializations of other classes. For example,

interplanetary spacecraft is a subclass of spacecraft. ]n this manner, 00A is used to organize types  into

a class hierarchy based on a isa (as in ‘{an X is a Y“ ) rdationship.



It may bc natural to think of an object  as composed of other  objects. For example, an interplanetary

spacecraft maycontain Ilulncrolls  jets, agui[lallc.e  and navigation control systcm,and aprobctostudy

a planet’s atmosphere. This dcqxmdenc.e introduces an additional dimension of the class hierarchy,

namely, tlic part o~ relation. The  parts of an object arc often ca]lcxl  its uttributc.s.

As nouns can be USC(1 to identify candidate  objects  (an(l  therefore, classes), verbs typically describe

interactions l~ctweell  objects,  tl~creforc  makingthcm  good candidatcwf  oropcrations,  or mcthods,acting

upon classes. ,Some  verbs may dcscribc  a service for a particular class of ob jccts, such as fire in the

P]lrasc “fircthcjct,s.” Othm-vmbsmay  dcscrilmapossiblc  state ofan object, such as coastin  thephrasc

“thcspaccc.raftbc  gins to coast. “  ~’l~ercforc,  vcrbsllelj)  to{lcfillc the opcrationso faclassaswd]  asthe

dynamic lmhavior of the system as a whole.

in the early stages of software development, including ol~jec.t-oricmtwl  approaches, diagrams arc

fre.qucntly  used t o  dcscrilm rcx]uircnncmts and guide dcwdopmcnt, ‘1’hc  OMT []6] notation combines

tlllc!cc  ollllJlclIlclltaryfl  iaglalnlllillgllot  atiollsillor(  lcrto(loc  lllllclltsystcl  llrc(jll  irelncllts:  objcctmoclds,

dynamic moclds,  and functional modc]s. The  dcmcnts of a system that define its cwcrall architecture

arc given by an object model,  whose notation is similar to that uscxl for cmtity-relationship diagrams

usml in database design. An object  model dctcrmincs  the typm  of objects that can exist in the system

and identifies allowable relationships among  objects. As a result, the objcc.t modd  constrains the set

of possible states that the systcm may cntcro A dynflmic  model describes valid transitions lmtwcwn

systcm states and indica,tm tllc conditions under which a state change may occur. Dynamic models are

dcsc.ribcxl in tcmnsof statetransition diagrams, A j~ll~ction~llnzotlclis  ada.taf low diagram that dcsc.libcs

the computations to be performed by the system. Collectively, these  three types  of diagrams are used to

lnodd the properties of the system, including flow of control, flow of data, patterns of dqxmdencyj  time

scquencc,  and name-spa,cc relationships. ‘J’he OMrJ’ approach is appealing since it ofrers multip]c views

of software rcxluircmcnts,  and sin cc a single not at ion is not forced to describe  many different pcnqmctivcs

of a given system, the notation for each type  of diagram is silnl)le  to usc and easy to understand.

3 Project Description

I)UC to tllc criticality and the volume of flight systcm software,  many rcccnt f l ight  system projects

arc incorporat ing formal  methods  into the software dcwclopment  process [1, 6]. in order to apply



formal methods  to legacy flight software, however, revme enginccwing  is nccdcd.  ‘J’he project dcscribccl

herein is associated with a larger multi-NASA site project to apply formal mcthocls to a portion of

the flight control software for the NASA Space Shuttle [14, 15]. The  project described here uses

formaJ  methods and object-oricntwl analysis to rcvcrsc cnginccr  the Phasellane module, which is

the subsystem that provides automatic attitude control of the Shuttle. The  critm ia that led to the

sc]cct,ion  of Phase_Plane  included finding a module whose requirements were difficult  to understand

and which will likely be the ta.rgct of future critical change requests. The objcctivc  of this project is

to provide multiple representations of the rcquircmcnts  and functionality of the system, which can bc

USC(1 to facilitate automated verification and validation of future changes and to facilitate rc-cnginccring

tasks.

I’wo major tasks were performed in the dmwlopmcnt of the forlnal specifications of the Phase_P1.ane

high-lcvc]  requirements. First, a concise description of the original requirements of the module was

acquircxl.  ‘l’his information was obtained  from the ltinciional  Su@@mZ  Software  Requirements (FSSR)

document [18] (also known as l,evcl C rcquircmcnts,  consisting largely of “wiring” diagrams), the L’uid-

ance and Control  Systems Training Manual  [19], source c.odo, informal design  notes,  and discussions with

Shut tlc software personnd,  The resulting description was use{] to develop an “a,s-bu ilt,” (illll)lcmelltatioll-

biased)  formal specification, capturing the functionality dcpictcd  in the 1“SS1{ wiring diagrams.

%cond,  in order to obtain a more abstract forlna] sl)ec.iflc.ation  and c]ilninatc  the ilnl]lclllclltatioll bias

present in the as-built layer,  OMT diagrams were developed to rcprcscnt  the intcgra,] information from

the low-level specifications. ‘J’hese diagrams facilitated the abstraction process and M to the higher-level

spcc.ifications.  I’his process of dcvc]oping a level of formal specification, followed by the construction

of the corresponding OM’I’ diagrams, led to the identification of the high-level, critical rcqui~cmcmts  of

the Phasellane  mo(lu]e.  Sample spcc.ific.ations  and OMq’ diagrams arc dc%cribcxl  l.mlow,

3 . 1  P]lase P l a n e

‘1’hc ltcaction  Control System (RCS) Digitaj Auto l’ilot systcm (I)A1’) achieves and maintains attitude

through an error c.orrcc.tion  method, which involves jet firings. A Wudc refers to the rotational position

of the vchic]c in tams of roll, pitch, and yaw. In order  to make the Shutt]c  maintain a specific attitude,

the crew slmcifics  two values: attitude dcdband  and rate dcadban[l.  A ititudc  dcadimncl  refers to how



much drift (positive or negative) will be tolc.ra.tcd  in any axis before jets are fired to correct the error.

lktc dcadba?ld refers to the allowable rate changes of the attitude (positive or negative) before jet firings

are requirrxl  to null the error. 1+’igure 2 gives a high-level view of the I)A}’. The State  Fktimator gives

the current attitude, taking into consideration spacecraft dynamics. This information is supp]ic(l to

the Phase_Plane  component, which compares the attitude and rate errors  (the rate of attitude change)

with the desired (dcmdband) values sl)ecificcl  by the crew.

DIGITAL AUTOPILOT (DAP)

------  ------  ------  --,. -.
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I I State
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Figure  2: IIigh-lcvd  view of I)Al’, including the Phase_Plane  module

l~i.gnre 3 givm a simplificxl  graphica]  r e p r e s e n t a t i o n  o f  the phase plane [1 8]. A pha,sc  p l a n e  i s

rcprcmntcd  as a graph plotting spacecraft rate errors against attitudo errors for one rotational axis,

with a “box’) (with parabol ic  sides) drawn around  the ccntcr, A separate phase plane exists for each

of tllc vcllicle rotation axes (roll, pitc]l, and yaw). in all attitude hold  situation, the error plot c,yclcs

around tllc zero error point with jets firing each tilne the limits of the “hex” arc cxcxxxlecl,  q’his activity

is known as “limit cycling” or “{lca(ll~al~(li  l~g”. ‘J’hc PhaseYlane  module  gcncratm positive or negative

rate commands on an axis by axis basis, where the JetSelect component determines which jet(s) to

fire (the topic of the larger  multi-NASA site project [1 5]). The shaded coast regions depict, situations,

wllcrc the Shuttle ncxxls no corrective action. ‘J’lic remaining regions arc known as hysteresis regions,

wllcrc cxtcwnal factors, such as positive (negative) acceleratio]l  drift, propellant usage, inertia, time lags

l>ctwccm firing commands, and scmsor noise, are taken  into consideration in order to preclude unnecessary

jet firings, As such, the hysteresis regions are defined  as a ~tinction of jet firings.

]n 1+’igurc 3, the dashed  lines outline the deadbanding  path, whine cinch “()” indicates points that the

Shuttle is changing state with rcwpcct  to thruster firings; in this graph, the Shuttle transitions through



+ rate error

+ rate

+ attitude error

Deadbanding Path

Coast Region
I -\

- rate deadband

n Hysteresis Region

l“igurc  3: Graphical depiction  of the pllasc p]a]lc, with coast and IIystcrcsis rc.gions [18]

six different states. As long as the current positio]l  is within the limits imposed by the deadbands,  the

dca(lband  constraints arc satisfied and no jets will be commanded  to fire, Figure 4 gives an explanation

of the cliffcrcnt states in which the Shuttle  can bc while it is Clcmdbanding  [19].

2’IIc rcquir’cmcmts for the Phase_Plane  module  are described in

simplified wiring diagram (see l’igarc 5),  which identifies tllc input

tables describing the calculation for the boundaries of the phase

IIistorical reasons, the FSSR descriptions use notation commonly

the l“SSR document that includes a

and out put values, as wdl as several

plane and its diflkrent regions. For

userl for circuit design, evcm though

the system being describcxl is software-based. The solid lines rcprcscnt  data flows and dashed lines

represent control. In Figure  5, the dashed  line indicates that the cna151e flag must be set by the crew in

order  to cn able

3 . 2  Fornlal

the autopilot mode.

Specifications

‘1’hc software was formally specified  using the  1’VS (1’rototype  Verification Systems) terminal-based,

forma] spcc.ification  tools [20] (e.g. syntax checker and theorcm  prover), which are under  continuing

development at SRI lnternationa].  A 1’VS specification comprises a collection of thcwies.  Ikch theory
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3.

4.

5.

6.

No jets flrc, Since the rate error is positive, the attitude error  will grow in a positive
direction,

Jc!tsfirctonu]lify  the positive rotationa]  rate.

Jets stop firing when the dcadband  ]inc is crossed, but  a little negative  rate errors is
inevitable..

No jets fire. With a negative rate error, the attitude error will also drift ILcgativcly.

Jots  fire to nullify negative rate error.

Jets  stop firing, but rcsidna] positive
again and tile cycle repeats.

Figure  4: Explanation

rate error causes attitude error to go positive

of dcmdbanding states [19]

consis ts  of  a signature  for the type names and locally dcclarcd constants ,  as WCII as the axicmls,

definitions, and theorems associated with the signature,

in order to obtain a specification of the high-level requirmne.nts from the existing documentation and

s o u r c e  code, several layers of sl)ccifications were  constructed,  whcwc cdl layer is more al~stract than

the prcccxling  layer. Spcciflcation  of  a. system through increasingly detailed  levels of abstraction is a,

tvcll-cstal}lisllc(l  method [7, 21]. 11’rom  tile forward cmgilicwring perspective, the software development

process proceeds in a top-down fashion. Typically, abstract, IIigh-level specifications arc used to establish

tlic system inputs, outputs, and basic functionality; critical correctness requircmncnts  that the system

must satisfy arc stated at this level  and become the criteria by which the specification is judged  to

be correct, Mid-]cvel  specifications introduce details of functionality and data structure requircmcmts

that may constrain thcevcntual  illll)lclllclltatioll  ofthc  system; cllallg(!rc[lllcstsfor  modulm  will most

likely be addressed in these specifications. A 10W-1CVC1 slmcificatioa  is astraightforwa.rd  representation

of a particular ilnl)lelllclltatioll,  which may be used to automatically generate source code [8, 17] or

vcrific.ation  conditions forl]rograllllller-lJroclllcc(l  code [1],

Il~col~trast,l  ~crforl~lillgr  cvcrsee  l~gi]lceril~go  ftl~cPhaseYlanel  ~rojcct,  il~volvc(l  amixturcofbottonl-

up with a top-down approach. ‘J’his  project exp]orcxl the use of formal specifications to derive require-

mcmts  that arc more detailed and I)rccisc  than an English paragraph, a.lld less obscure than optimized

sourc,ccodc.  specifications  wcrcdcvclopcxl  in tllefollowillg  ordm:  low-, high-, and mid-level, IIigh-level

natural language  descriptions of this portion of the Shuttle 11A]’ were available, as was source code.
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Given the two types  of documentation that varied  in tile amount of detail, we started with the low-level

spcxific,ations  to ensure  that an accurate description of the current functionality was captured. Next,  we

used the hi.gh-lcwc]  descriptions from tl]e Crew ‘1’raining  ManuaJ and constructed  several OM’I’ diagrams

to assist in the spcciftc.ation  of high-level requirements. Finally, in order  to bridge the information gap

bet  wccn the low-level, illllllclllclltatioll-  sl)ecific.  and the high-lcvc]  specific.ations, we constructed a set

of mid-level specifications.

specifications, and we used

overall c.omponcmt  in order

~Te ~lscd t]l~ oh~q” {liagral,ls  to intro[luce  al~straction  in to  the  1ow-]CVC1

he high-level slmc.ific.ations  to identify critical properties applicalj]c to the

to construct the mid-lcvd  specifications. ‘l’hc remainder of this section

dcscrilms  in mom detail  the specification process and includes example specifications.

l’he  low-level formal  specification of Phase-plane was developed from the existing source code,

tile Crew ~laining Manual  [19], and the low-level wiring diagrams, q’his specification mirrored the

func.tiona]ity of the existing systcm, b u t  did not Ofrcl an al~stract view

rcquircmcmts.  Due to space c o n s t r a i n t s , 1110 low-level specifications arc

of the module’s functional

omitted but  can be found

in [22].

A high-level “black-box” specification was thcm dcwclopcxl,  which did not inc]udc illll)lclncl~t:itiol~

details. At this level, it was straightforward to state abstract properties that any software implementing



Phase-Plane must  possess . ‘l’lie  hi,gh-lcve] spccificaticm  describes properties  t h a t  charactcrim t h e

Shutt le’s  posi t ion in terms of attitude and rate deadband  values. If tllc Slluttlo travels ou t s ide  the

specif ied regions, then the jets need  to be fired  to bring the Shuttle back into the phase plane rcgi.on,

Several data types were specified in the 10W-1CVCI specifications and are used for both the high- and

n~id-lmwl spccifica,tions; they arc given in l’igurc 6 for  c,larity  purposes .

nonnegative-real: TYPE = {x: real! x >= O}
rate-error- type: TYPE = real x unite are degrees/second
rate-deadband-type: TYPE = non_negative-real
attitude_deadband_type: TYPE = non-negative-real
attitude-error-type: TYPE = real X units are degrees

I’igurc6:  IIatatypcsuscd  for spcw.ificationsof  tlLcPhase_Plane  module

Afc:wl~rc(licatesa  reclcfil~c(l  to flcscril)e  gcl~cral  l)rolJcrticsof  tl\c Sl]llttle, wllcrcllooleal~  predicates

arc dcnotd  by a “?” suffix, and the types  of the prcxlicatc  arguments arc cnc.loscx]  io square  brackets,

]Pirst,  the is-deadbanded?  predicated  ctcrmincx  \\~llctllclt  ]lcSllllttleisil~  a(lea(]l}all(lil~gst  ate,w]lcrc

tllcrc arc four argumcmts to the predicate corresponding to the attitude dcadband,  rate dcadband,

current attitude error, and current rate error  rcprescmted  by their  rcspcctivc  types.

—.
is-deadbanded?  : pred[attitude-deadband-type  ,rate-deadband-type,

attitude-error-type,rate-error-type]— I

Next, twoprcdicatcs  arcdcfinrd  toc.hcc.k ~vll{!tllellatea]~(l  attitll(lcclrorsarcil~  aregion  where jets

IIccd to befircd to dccrcasc  rate error (gmlcratc  positive! rate error).

decrease-rate-error? : pred[attitude-deadband_type,rate-deadband_type,
attitude_error-type ,rate-error-type]

increase-rate-error? : pred[attitude-deadband-type,rate-deadband_type,
attitude-deadband-type  ,rate-deadband_type]

l~ig111c7c  o:~tail~sal  ~al~brcviate(l versiol~oftl~c tol)-lcv(!]  sl)ccificatiolls.  lnthisc  .asc,wi ring-phase-p].ane

rcfms to the low-level specifications. g’hcrefcrcncml  statcsa letllosc(l  el~ic.te(lill  17igurc3.

IIascdon  thcspccification  forthcsix  states, tllcfollowin  ghigh-lcwcd axiom wascollstrllctc(lt  orclate

tllc attitude  and rate dcadbands,  as well  as the ratcand  attitudccrrors.  Specifically, thcaxiom asserts

that ifthc Shutt]eis  in the dcadband  regions, tllcm thcreis  nonwxl  to fire jets to incrcaseordccrcase



*98*89,9*89*,,*, *998 ea*, e9, ,*, ,* ,,, ,,, ,, ,6,,,,,, ,,, ,,, ,,, ,,, ,,88 *, ##,,,*,*,,,*,llllll//////f/l  ////l  /l f///l  lfffll/llfl//ll  lllll//lfll///l  lfl//f/f////l//  llff//f,,, ,, ,0,,,,,, ,,, ,,, ,,, ,,, , ,,, ,,, ,,, ,,, , * **,,,*,,,,,, ,,, ,,, ,,, ,0,,  ,,, ,0,,,,,,,, 0

)!
% Module: High-Level Specifications  of Properties for Phase Plane Module
x
% The following characterize the 6 states of Shuttle when it is deadbanding
x
* , * , , , , * ,, , , * , * , ,, , ,, ,, , * , ● * * ,, , ,, , , , , , , , , ,, , ,, ,, * ,, ,, , ,, , ,, ,, , , , ,, ,,* ,, , ,, , , , ,lll/f//f/llllff  ff/f/f/f/fll//l  fl////f/////l/f f// fll/l//l/flll/f fff/ff//ffff//ff, , * , , * * , ,, , , , ,, , ,, * ,, ,, * , * ,, , ,, * , * * * , , * ,, , ,, , ,, ,, , ,, ,, , ,, , ,, ,, , , , , , * ,, ,, , ,, , * * *
high-level-phase-plane: THEORY
BEGIN
USING uiring.phase-plane  % low-level specifications for phase plane

x
## B**99#a** #9a 9*9* 9#**99 ##a* **99,*,* 6,##,* *11 ****19**,,,  ***, ,, **#*#a,, **,6* 6#**/ll/f/ll/ff/f/l /l/lllf/////fff /// fl///lllfl/////  /f ff////lfflll/l/  /l ff/l///ll/fl, * * * * , * , * * , ,, , , , ,, * , , ,, , * , , , , ,, , ,, ,, , , , , , , , , , , * , , , , , ,, , , , , ,, ,, , ,, , , , , * * , , ,, , , * *
1!
X No jets fire. Since the rate error is positive, the attitude error will
!! grow in a positive direction. (State 1)
x
no-jets-positive-rate?(att-db,rate-db,att-err,rate-err)  : bool =

is-deadbanded?(att-db,rate-db,att-err,rate-err)  k
rate-err > 0 & att_err > 0

1
X Jets are firingto correct positive rotational rate (State 2)
%
jets-fire-correct-pos-attitude-error?  (att-db,rate-db,att-err,rate-err)  :bool =

NOT (is-deadbanded?(att-db,rate-db,att-err,rate-err)  ) &
decrease-rate-error?(att-db,rate-db,  att-err,rate-err)

1!
% Jets stop firing when deadband line is crossed, but a little negative
X rate error is inevitable. (State 3)
1
jets-stop-negative_rate_error?(att-db,rate.db,att_err,rate_err)  : bool =

is-deadbanded?(att-db,rate-db,att-err,rate-err)  &
rate-err < 0

%
% No jets fire. With negative rate error, the attitude error will also
X drift negatively. (State 4)
%
no-jets-negative-rate?(att-db,rate-db,att-err,rate-err)  : bool =

is-deadbanded?(att-db,rate-db,att-err,rate_err)  &
rate-err < 0 & att-err < 0

%
% Jets are firing to correct negative attitude error (State 5)
x
jets-fire-correct-neg-attitude-error?(att-db,rate-db,att-err,rate-err)  : bool =

NOT (is-deadbanded?(att-db,rate-db,att-err,rate-err)  ) &
increase_rate-error? (att-db,rate_db,  att-err,rate_err)

x
% Jets stop firing, but residual positive rate error causes attitude
~ error to go positive again and cycle starts over (State 6)
9!
1,

jets-stop-positive-rate-error?(att-db,rate-db,att-err,rate-err)  : bool =
is-deadbanded?(att_db,rate-db,att-err,rate-err)  &
rate-err > 0

. . .

end high-level-phase-plane

11’igurc  7: Samplchigh-lcwcl  sl)ccifications of Phase-Plane



the rate error,

AXIOM FORALL
(att-db:attitude-deadband.type)  ,(rate-db:rate-deadband-type),
(att-err:attitude-error-type),  (rate-err:rate-error-type):

is-deadbanded?(att-db,rate-db,att-err,rate-err)  <=>
NOT (decrease-rate-error?(att-db,rate-db,att-err,rate-err)  OR

increase-rate-error?(att-db,rate-db,att-err,rate-err)

)

lPinally,  amid-level forma] specification wasout]incd  tocapturecritica]  aspects of functionality and

rcquircmcnts  at alevel that would bc useful  to Sll~lttle  r{:(l~lircl~lcllts  analystswhcm  reviewing proposed

modifications to the module. Code dcwclopcxl  from this specification would implement the “Phase

l’lancl,ogic’)  boxofthclow-level wiring diagram (I~igurc 5). ‘.l’hecllallcnge  atthemid-lmd  wastoornit

extraneous illll)lclnclltatioll details, yet be prccisc cmough to capture necessary properties concerning

minimization offucd usage,  thrustmf irings, and movmncmt al)out  the desired attitude. In constructing

tllcmid-level slJecific.atio]  ls,scvcrala  ssllllll}tiolls\  vereI1laCle.  l+’irst,  noexternal  accclcwation  disturbances

were taken into consideration. ‘1’his assumption means  that by taking advantage of symmetry, it is

sufficient to specify only t]lc upper (nonnegative rate error) IIalfoftllc  Phase_Plane  diagram, as shown

in l’i.gurc  8. Second, the hysteresis region was treated as a coast region. l’inally, the specification d o t s

not explicitly state that the software implmncmtation is cnablml by af lag set by the crew, nor does it

statccxplicit]y tl~attlle calc.lllatiolls will I)c(lollcollccforcacll  axis (roll, pitc]l, and yaw),

In addition to those  types  already  defined in the low-lcwel specification (SCW  Figure 6), new types

were introduced in the mid-level specifications to represent absolute rate errors, thruster commands,

and thruster accchmation types. l“igurc  9 gives  the specification ofnew type declarations and external

inl)utse

Afcw~ltility  flll~ctiollsa  re(lcfil~c{l  to simplify tlicsl~ccificatiolls:  absol~ltcv  al~lc,s (J~larc,all(l  sign.

~:’::l:NDIF  ---2  ]

Next,  inl~igurelO,  wc{lcfil~e  afe~v{lca(ll~all(lil~g  fl]llctiolls,~vllelc wctakeadva.ntage  ofthe symmetry

and yrol)rcscllts  tllevcrtical axis (al~solute  value ofratecwror) and * is the horizontal (attitude error)

axis .  q’hesylnlnetry  l~rol)crty el]al]lcs llstogellcralizc  tllccalc(llatiol~s  to thosein  tllclll)~)crhalfofthe
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dcadband  region. ‘1’he adjust-for-symmetry function  accounts for symmetry of tl(c phase plane and

returns  the new thruster command given the current rate error  and thruster command. l’hc  calculations

for upper-attitude-limit and lower -attitude-1 imit are a generalization of a portion of the low-

level  spw.ificatio:lse l’hme  limits determine the bounds of the hysteresis regions, and, as mentioned

prcvious] y, are a function of t,hc jet firings.

q’he tail of the coast  region is dcfincxl  by the rate-deadband  above and tile lower-rate-deadband

hclow. ‘1’hc lower-rate-deadband  is typically O, 6*rate-deadband  []8]. ‘l’he following specification

gives the lower-rate-deadband  as a rcaj and asserts that the lower-rate-deadband  is at most the

rate-deadband.

——
lower. rate-deadband: real
rate-de adband_relationship: AXIOM lower-rate-deadband <= rate-deadband 1

‘J’llc lower (left)  boundary of the  coast region is ddi])cd by the lower-attitude-limit (a function dc-

c.larcxl bc]ow)  and a t t i t ude  -headband .  ‘1’he  lower-coast-limit is typically lower-attitude-limit - 0. 2xa

‘1’hc spcc.iflcation asserts only that  the lower -coas t - l imi t  i s  at Inosi, the lower-attitude-limit.

lower-coast-limit: real
coast-limit-relationship: AXIOM lower-coast-limit <= lower-attitude-limit I

‘J’lle IIrilnary function control-action returns a tllrustcr colnmando ‘J’hrustcr  hysteresis can be



i
# TYPE DECLARATIONS
,,L

abaolute.rate-error-type:  TYPE = non-negative-real
thruster-command-type: TYPE = {positive-thrust, zero-thrust, negative-thrust)
thruster-accel-type: TYPE = non-negative-real

%
X External Inputs
x
% Rate and attitude deadbands characterize the desired bounds.

x
rate-deadband: rate-deadband-type
attitude-deadband: attitude-deadband.type

x
I Thrusters generate a constant acceleration during a firing period.
x

thruster-impulse: thrust.er-accel-type

x
I Rate and attitude errors are determined by on-board sensors.
z

rate-error: rate-error-type
attitude-error: attitude_error-type

Figure9:  Variableand  tyl~e[leclaratiolls forlni[l-level specification

used to minimize thruster firings due to delays, sensor noise, or movement between state transition

boundaries. At this lCVCI of abstraction, the hystmxwis  zone is treated the same as a “coast” zone.

Figure 11 gives the specification for calculating the thruster comlnands. l’irst,  it must be determined

if the spacecraft is outside the dcadband  area  and t]lrustcrs  should be fired “downward”. Second, it

must bc determined whcthir  thespacccraft is outside the dcadband  arcaand  thrusters should bcfircd

“upward’ ). 
‘J’bird, if the spacecraft is within the “coast” zone, then do not fire thrusters. If all the above

cases do not apply, then incorporate thruster hysteresis.

3 . 3  C o n s t r u c t i o n  ofOM’I’  Diagranls

Since the original Phase-plane software was not ol~jc?c.t-oricl~tc(l, the OM’1’ analysis began with the

source code and illll~lcl~lcl~tatioll-slJccific  wiring diagram ofthc pha.se~lane  I11o(1u1o and rcslllt~cl  in

two levels of data flow diagrams. l’hcsc  dia.grains assisted in the abstraction process to obtain an

a,rchitcctural  view of the phase  plane as it dated to the overall DAP system, thus leading to the

construction of the object models. Using the functional and object  diagrams in conjunction with the

description of the deadbanding  states, wc created tllc dynamic modc!l for the PhaseJ?lane  module,

‘1*I]c dynamic model depicts the statcshetwccm  jet firings  as the Shuttle dcadbands.  A high-level of



.,
l!!
~ Calculate coordinates for plotting attitude and rate errors
‘1!
y: absolute-rate-error-type = abs(rate-error)
x: real = sign(rate-error)xattitude-error

!! Because all calculations are done in the upper half of the deadband
~ region, the calculated thruster command may need to be reversed.

adjust-for-symmetry(t:  thruster-cornmand.type,

IF (t =
THEN
% re
ELSE

re: rate-error-type) : thruster-command-type =
zero-thrust) OR (sign(re) >= O)
t
was negative, so thruster commands must be reversed
IF t = positive-thrust

THEN negative-thrust
% t was negative-thrust
ELSE positive-thrust

ENDIF
ENDIF

x
% Calcrrlate boundary of hysteresis region based on a functionof jet firings
x

upper-attitude-limit: real = -sqr(y)/(2*thruster-impulse)  + attitude-deadband
lower-attitude-limit: real = -sqr(y)/(2*thruster-impulse)  - attitude-deadband

l’igurc 1 0 :  Varial]lcsa l~cl(lea(ll~al~clil~gf~  lllc.tiol~s to a(ljllst for  syllllnctryil~ phascp  l a n e

spcc,ific.a,tjons  was~c]lerate[l~a,se(l on thedyna,lnjc model. ‘1’heobject and the functiona]  models offered

one love] of abstraction, t]lus lcadjng  to the dcwelopmcnt  of the next layer of formal spcc.ifications

(mid-level spcxificatjons dcscribjng  data structures and operations on the data strucl,ures),

‘1’l~erclllajl~(lerof  tlljsscc.tjol~(lescril~cs  tile OM’1’[liaglallls  col~str~lctcd(lllril~g  tllcreversccllginecril~g

and forma] specification process.

3 . 3 . 1  F u n c t i o n a l  M o d e l s

IIata flow diagrams (lII’l)) facilitate a high level  understanding of systmns and are used in both forward

and rcwerso  engineering. Static  analysis of program code provides information that  accurately describes

flow of datain  asystem. Process “bubbles” denote procedures or func.tion  sofa given system, arrows

represent dataflowiagfrom  one process to another, and rectangles represent external entities.

q’he s implest  funct ional  model is a context diagram,  or l,cvel O DFII;  the J,eve] O I)FII for the

Phase-plane module is shown in Figllre 12, wllel’e  tl~eelltircl)llase  l~lal~cl  llo(l~llej  srecll~cc(ltoa  process

bubb]e,  with the external jnput  and output labeled. ‘J’lIc  IJevel  O 1)1”1) closely rescvnbles the structure

ofthc wirilig diagram  for Phasellane  given i n  l’igure 5.



thruster-hysteresis: thruster-command-type = zero-thrust

control-action: thruster-command-type =
IF (y > rate-deadband) OR (x > upper-attitude:limit)

THEN adjust-for-symmetry(negative-tlmust,  rate-error)
ELSE IF (y < louer-rate-deadband)  ANO (x < louer-coast.limit)

THEN adjust-for-symmetry(positive-thrust,  rate-error)
ELSE IF (y <= rate-deadband)

AND (lower-rate-deadband  <= y)
AND (x <= lower-attitude_limit)

OR (x <= lower-attitude-limit)
AND (lower-coast-limit <= x)
ANO (lower-rate-deadband  <I= y)
THEN zero-thrust
ELSE thruster-hysteresis

ENDIF
ENDIF

ENDIF

l’igurc 11: Sl)cw.ification of l’unc.tion  to ~alc.ulatc ‘1’hrust ~om]nands

l~igurc13givcs  the next  lmdl)l’ ]), whirhshowsthc  (lifrere]~tl)rocesscs  that constitute thcPhasellane

module. As shown in this figure, the input variables are used to c.a]culatc  boundaries for the phase

plane.  ~llebo~ll~[laries,t  l~eattitll{le  deadband  al~(ltller  ate[lca(lbal~{l,are  s~ll)l>lied  to the Phasellane

modulq, which c.alculatcs  thruster commands (jet  firings). ‘J’he thruster commands arc then  supplied

to the  Jet_Select  m o d u l e

desired thrustw  effect.

3 , 3 . 2  Object M o d e l s

that dc.terlnincx which comltination  of jets should lM used to achieve the

lhwlopmcnt  of thti as-built layer of specifications, the I) FI)s, and the requirements document for

Phase_Planelcd  to thcdevclopmcnt  of anobject  model f’ortlie  Phase-Plane.

l’igurc 14 depicts ahigh-lcvc]  object  ]nodc] for tllc cmtirc  I)Al’, consisting ofthc  State Estimator,

Phase Plane, and the Jet Select c.lasses, corresl)onding  to tllc diagra]n  given in Figure  2. l;ach class

consists ofthrcw  parts corresponding to the name ofthc class, list ofattributcs,  and list of operations,

rcspcctivc]y. ~hc diamond syml)o] demotes aggregation, whcwc the class above the diamond is said to

consist ofthc  three classes below the diamond. lfeithcr attributes or operations arc not known (or do

not exist) for a given class, then  the corresponding area is shaded. q’hc Phase Plane class uscs the class

Crew Supplied Information, which rcprcsmlts  the dcadl)a]ld  limits that arc used in the calculation of the
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IJhasc  plane boundaries.

Figure  14 also contains the object  diagram for tile Phase Plane c.lass,with  attributes rate crwr, attitude

CWW, and rotation  axis. ‘l’he operation for this class is crllculate  ilwvst cmnnmnds,  based  on the difference

between the current rate and attitude error values  and those  respective limits supplied by the crew.

l’hc  fillcx] circle attached to the Phase Plane class, indicates that the I) Al’ contains three  phase plane

components, one to calculate different thrust  commands for each of tllc spcciflc  rotational axes: roll,

pitch, and yaw. q’here are two components for each Phase Plane class, Coast Region and Hysteresis

Region. in the coast region, only the values  of tho attitude and rate errors  arc used to determine

whether tile Shutt]c  is still within the deadband  limits. In the hysteresis region, however, additional

information, such as fuel usage,  sensor noise, and other spacecraft dynamics, is used to calculate thrust

commands,

3 . 3 . 3  Dynanlic  Moclels

l’orconlpletcmcss sake with respect tothrec nlodcdso  fOhl’I’,thi sscction gives tllc{lyl~alllicl~~odelsfor

tllc phase plane, which descrihcs  the states in which the 11A]’  can lJC with respect to the Phase-Plane

component. Also included are the transitions that take tllc I) Al’  from onc state to another. A pictorial

diagram of the position of the Shuttle is given in l’igure 3. Since the Phase_Plane  module  is an evcnt-

bascd systmn,  the state transition diagram is straightforward to construct.
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Figure  15 gives a statcxhart  depiction of the states through which the Shutt]c  transitions while it

is dcadbanding. q’hc state transitions are in the form of jets terminate (begin) firil[g and the Shuttle

drifting in (out) of the deadband  region.

Note that Figure  3 depicts the clockwise traversal of the states in which the Shuttle cycles through the

dcadband  limits. It is also possible for the Shuttle to traverse the cycle in a counterclockwise fashion,

in which case, the arrows in F’igure 15 would be rcverscxl.

l’inally, a very high-level view of the states in which the Shuttle can be is given in l’igyre 16. Included

in the diagram are the actions or conditions that cause the Shuttle to transition from one state to the

next:  jet firings and clrift. ‘J’he rectangle containing “1’ham l’lane” and the labeled arrows pointing to

the states indicate that the state

4 Lessons Learned

transitions describe the Phasellane  module.

q’he results from this reverse engineering project have provided several lessons for the overall Space

Shuttle project as well as for future reverse engineering projects. l’irst,  in order to obtain high-level

requirements for existing software, it is clifficu]t  to obtain  the specifications (formal or informal) in

asingle  step. Instead, several layers of specifications should be developed, starting with the as-built
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specification, IIy closely mirroring the programming structure of the existing software, this specification

provides traceability through the diffcrcmt  ]cwcls  of specifications.

Second, forma] specification languages and their  corresponding reasoning systems provide a framework

for integrating disparate sourc.cs  of project inforlnation  to dcxcrihe  a systeln at ]nany levels of detail.

‘1’hc project information may be documcatwl  in a variety of formats, froln different sources, and

sul>je.ctwl to varying levels  of forma] review. Ii’or  this particular projcc.t, information was obtained

from illll)lc:lllelltatlioll-sl~ccific  wiring diagrams, definitions and instructions from a crew  training manual,

source code, informal design notes, and discussions with shuttle software personnel. q’he information

was analyzed  and distilled into spcc.ifications  and 0h4’J’ diagrams. The  I’VS proof system provided a

mechanism for checking the c.omplctcness  and consistency of the specifications.

‘1’bird, the benefits of ob jcct-oriented analysis can be exploited for rmwrsc-cngi nccring as well as

forward cmgincwin.g  projects. Spcc.ifica]ly,  object-oricllte.d analysis assists in the understanding of

large, complex systcvns, l“urthcrmore,  an object-oricmtcd pcrspcctivo  facilitates future modifications
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by providing the rcxluircmcnts analyst and the dcmloper with a IIi.gh-lcwcl,  abstract  view of system

C.olnponents.

Fin all y, a. process consisting of the construction of a level  of formal specifications, followed by a set

of corresponding diagrams, is nccdcxl to devcdop several layers of specifications for an existing system.

‘1’hc diagrams introduce abstractions that can be used to guide the construction of the next level

of specifications. Furthermore, the thrm complementary notations in the OhlrJ’ approach cnaMe the

Is deadbanded

-

Phase Plane Module drift fire jets

Outside Deadband Region
is not deadbanded

lrigurc 16: lIigh-level states for Orhitm  with respect  tothe Phase_Planenlodule



specifier to represent different

s Conclusions and

components of the system using the

Future Investigations

Imst-suited type of diagram,

Using formal

Phase-Plane

specifications ancl  object-oriented analysis to dcscrilw tllc software that implements the

module  of the Space Shuttle DA]’ has demonstrated that these  complementary analysis

and dcvelopmrmt techniques can be used for existing, inclustria]  apl)lic.ationso Constructing the diff’crcnt

lcnwls of specifications, with increasing abstraction , supldmncmtcxl  by the OMq’ diagrams provided a

moans for integrating different types of information regarding the Phasellane  module  from disparate

sources. IIaving access to the formal specifications and dia,gra,ms will facilitate the verification that the

original (critical) requirements or properties are not violated by any future changes to the software.

in addition to facilitating verification tasks, the formal specifications can bc used as the basis for

any automated processing of the rcquircmcmts,  including checks for c.onsisten  cy and completeness,

interaction with the requirements ana~yst  and other  mcmbcm  of the original dcwelopmcmt  team for

tile projcd strongly support the conclusion that the sljecific.ation  construction process is useful  to the

ovcra~l software dcvclopmcnt  and m ainknance  processes of legacy (safct  y-crjtical  ) systmms  [15].

k’uturc  investigations will continue to refine  the mid-level and high-lcwe]  specifications and develop

theorems to relate  the lCVCIS of specifications, We are also investigating the formalization of the OM’I’

diagraming notation, which will provide a means for using automated techniques for extracting formal

specifications from the OM’I’  diagrams jn order  to fiat.ilitate tllc specification procms  [23]. Furthermore,

extracting the specifications directly from the diagrams will enable us to reason about the complctcnms

a n d  consistcmcy  of the diagrammcd  systcm,

maint  cnance  phases  of software dcnwlopmcmt.

tl]us facilitating the rquiremcnts  analysis, design, and
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